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ABSTRACT
Predicting response to therapy is a major challenge in medicine. Machine learning algorithms are
promising tools for assisting this aim. Amongst them, Deep Neural Networks are emerging as the
most capable of interrogating across multiple data types. Their further development will lead to
sophisticated knowledge extraction, shaping the medicine of tomorrow.
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The rapid development of high-throughput technologies such
as Next Generation Sequencing, as well as the digitization of
already existing diagnostic procedures like digital-radiology
and digital-pathology, along with the global adoption of
Electronic Health Records (EHR), provide a big-data land-
scape for the utilization of machine learning (ML) frame-
works for accelerating the advent of personalized medicine.
This landscape is however far from ideal, partly due to lack of
large patient cohorts with detailed follow-up and full mole-
cular profiling and partly due to lack of preclinical models
assembled in large panels able to adequately recapitulate dis-
ease complexity in the clinic. Although such panels (e.g.
Genomics of Drug Sensitivity in Cancer (GDSC) cancer cell-
line pharmacogenomics database) have already been made
available to the community1 it has been demonstrated that
they need to be further expanded, combined and processed by
multiple data-mining frameworks to maximize knowledge
extraction and clinical relevance.2

On a different note, it is widely accepted throughout the
scientific community that the driving force of carcinogenesis
is genomic instability operating on a patient’s most unique
characteristic, his/her genome,3,4 making cancer the most
‘personal’ among diseases. As such, a major hurdle in oncol-
ogy is our current inability to predict the individual patient’s
response to the selected therapeutic strategy, since the latter is
defined based on crude clinical characteristics along with
a limited number of molecular biomarkers, which however
cannot recapitulate the aforementioned complexity. As
a result, patients do not receive always efficient treatments,
translating in decreased overall survival and quality of life. In
a proof-of-concept study Geeleher et al.,5 demonstrated
that ML frameworks could be utilized for predicting clinical

drug response from baseline gene expression, while trained on
in-vitro cell-line response data. However, Deep Neural
Networks (DNNs), which have been shown to deliver “state-
of-the-art” (SOTA) performance in a wide variety of tasks,
were not part of this study. Hence, their value in that parti-
cular task was yet to be demonstrated.

The study published by our group bridged that void by
utilizing the GDSC cell-line pharmacogenomic database to
train DNNs to predict drug response from baseline gene
expression and validated their predictive performance on an
extended set of publically available clinical cohorts as well as
on previously unpublished ones.6 Although the number of
training cases (1001 cell-lines) was very low for an ML frame-
work such as DNNs, which are known to require very large
training sets for their full potential to be unleashed, and
despite the dimensionality curse7 present in this training set,
not favoring such complex models that tend to overfit on
small training sets, they were surprisingly shown to generalize
better in clinical cohorts than other SOTA ML frameworks,
thus delivering superior predictive performance. Α significant
DNNs drawback, apart from the fact that they require large
training sets and large computational resources to be trained,
is their ‘black-box’ nature in the sense that the intrinsic multi-
dimensional, non-linear relationships learned by the model
across their hidden layers are extremely hard to interpret.8

Toward that end, our study presented a knowledge-extraction
strategy for mining learned gene-importance toward drug–
response prediction. Consequent pathway enrichment analysis
of the extracted genes provided insight on the molecular
mechanisms that drive drug-response, confirming already
existing knowledge as well as revealing novel pathways as key-
players in the response-to-therapy mechanisms.
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Future plans for carrying this work forward include (a)
increasing the cell-line training-set size and dimensionality as
well as utilizing more ML frameworks for comparison (linear
models, Decision Trees, Support Vector Machines, and
Bayesian Classifiers) in order to unambiguously establish
DNN superiority, (b) training DNNs to model combinatorial
therapeutic schemes, on actual clinical cohorts and finally (c)
integrate on the latter, information from alternate data
sources such as histopathological whole slide images (WSIs).
Regarding the first goal, since DNNs have demonstrated the
ability to learn meaningful biological information from cell-
lines that generalizes to the clinic, we need to push this
boundary further by increasing the number of available cell
lines as well as the information we feed the networks. The
DNNs of our study used only gene-expression as input.
Including mutation and methylation status, as well as proteo-
mic and metabolomic information will boost toward this
direction. Additionally, the in-vitro drug response data that
we utilized originated from simple 2D-cultures, which are
sub-optimal for recapitulating the tumor microenvironment
that plays a pivotal role to therapeutic response.9 Hence, it is
obvious that the response data have to be enhanced through
organotypic cultures or in-vivo dose–response experiments
through xenografts in mice. As to the second goal, large
clinical cohorts with complete follow-up and baseline tumor
molecular profiling, having received specific therapeutic com-
binatorial schemes, need to be identified and used as training-
sets to train combination therapy-specific models. In respect
to the last goal, our group has developed know-how on
applying specialized image processing DNNs, namely
Convolutional-Neural-Network (CNNs), Convolutional-
Autoencoders (CAEs) and Generative-Adversarial-Networks
(GANs) on histopathology WSIs. Specifically, our submitted
solution in the Camelyon-17 contest achieved the fifth best
score at the time of submission (Cohen’s k of 0.9052).10

Camelyon-17 is a global contest for evaluating the perfor-
mance of Artificial Intelligence-powered algorithms for auto-
mated detection of metastasis through analysis of digitized
histopathological lymph nodes sections from breast cancer
patients and consequent patient-level N-staging classification.
Through the application of such networks, feature embed-
dings corresponding to tissue architecture will be extracted
and integrated along with features describing the tumor mole-
cular profile. Such an integration will allow us to develop even
more powerful models for delivering personalized therapy to
the clinic.

Abbreviations

AI Artificial Intelligence
CAE Convolutional Autoencoders
CNN Convolutional Neural Network (networks used for image

processing)
CNV Copy Number Variation
DNN Deep Neural Network
HER Electronic Health Records
GAN Generative Adversarial Networks

LN Lymph Nodes
ML Machine Learning
SOTA State of the art
WSI Whole Slide Images
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